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Analysis of Irregularities in a Planar
Dielectric Waveguide

SHYH-JONG CHUNG anp CHUN HSIUNG CHEN

Abstract — A numerical method based on the partial variational principle
(PVP) is proposed to solve discontinuity problems due to arbitrary irregu-
larities in a planar dielectric waveguide. In this study, a variational equa-
tion is established and solved by the finite element method along with the
Green’s function technique. The integral variable of the Green’s function
is changed so that numerical calculations can easily be performed. Owing
to the accuracy of the present method, the radiation fields can be obtained
with no difficulty. Several numerical results, including the reflection and
transmission coefficients as well as the radiation losses and patterns, are
calculated and compared.

I. INTRODUCTION

ISCONTINUITY problems in open dielectric wave-

guides are essential to the design of various optical
“and millimeter-wave components, such as filters, grating
couplers, and distributed feedback lasers. They also play
an important role in the splicing of two optical fibers.
Because of the unboundedness of the structure and the
presence of the continuous spectrum, the analysis of the
discontinuities in an open waveguide is more difficult than
that in a closed one. Roughly speaking, the discontinuity
problems in open waveguides may be divided into three
categories: problems with small discontinuities, problems
with step discontinuities, and problems with arbitrary dis-
continuities.

For the first category, Marcuse [1] approximated a
tapered dielectric waveguide by many infinitesimal step
junctions, and then assumed that the modes of the ad-
jacent waveguides are approximately orthogonal. Clar-
ricoats and Sharpe [2] neglected the continuous modes and
matched only the discrete modes at the junction of a small
step. Miyanaga and Asakura [3] solved a linearly tapered
grating coupler on the basis of the first-order perturbation
theory by dividing the grating region into short subsec-
tions.

For problems with large steps, some authors have re-
placed the unbounded configuration by bounded [4] or
periodic [5] ones. Some have discretized the continuous
spectrum of the radiation modes, using a complete set of
“good functions” for expansion [6]-[8]. They then applied
the mode-matching technique or the least squares boundary
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residual method to solve the step discontinuities. Rozzi
and In’tVeld [9]-[11] solved an integral equation by the
Ritz-Galerkin method, while Gelin er al. [12] and Capsalis
et al. [13] solved it by the Neumann series iteration proce-
dure.

The previous methods can solve discontinuity problems
either with slight perturbations or with regular shapes,
such as step junction problems. It appears that none of
these methods can be used to tackle problems with arbi-
trary discontinuities. Suzuki and Koshiba [14] treated these
problems by combining the finite element method and the
analytical method. In their work, the fields far from the
waveguide discontinuities were assumed to be zero: thus
one could place a semi-infinite electric conductor at the
field-free region.

In our approach, the scattering problem of a uniform
slab waveguide with arbitrary discontinuities is analyzed
on the basis of the partial variational principle (PVP) [15].
From the PVP, a variational equation including the inter-
ior and exterior fields is obtained and solved by the finite
element method coupled with the frontal solution tech-
nique [16]. The interior fields are represented by the finite
element nodal values and the corresponding local bases,
while the exterior fields are expanded as a function of the
nodal values at the discontinuity region through the Green’s
function of the uniform slab waveguide. Since no assump-
tion about the fields far from the discontinuities is im-
posed, the finite element boundary can be put as close to
the irregular region as possible.

The validity of the proposed method is examined by
observing the convergence and the power conservation of
the numerical data, and also by comparing the numerical
results with those obtained by other methods. The reflec-
tion and transmission coefficients as well as the radiation
patterns caused by several discontinuities are presented
and compared.

II. FORMULATION OF THE PROBLEM
A. Variational Equation

In this study, we consider only the symmetric discon-
tinuity problems associated with a slab waveguide which is
excited by an even TE mode as shown in Fig. 1(a). The
structure is symmetric with respect to the y—z plane and
is uniform in the y direction. Thus an infinite magnetic
wall I}, may be placed on the y—z plane so that only the
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free space (ny=1)

magnetic wall I,
®)

(a) Original scattéring problem with irregularities in slab wave-
guide. (b) Half structure for analysis.

Fig. 1.

region x>0 needs to be considered. Then we have an
irregular region AQ of arbitrary shape and inhomogeneous
refractive index n(x, z) connected to an otherwise uniform
slab guide of refractive index n, and half-width d, as
shown in Fig. 1(b). The magnetic wall F and the art1f101al
- boundary T, enclose the finite element region € (0 <z </,
0 <x<Xp).

From the partial variational principle (PVP) [15], one
gets the following variational equation:

6I%=10
a#-/szdv [E(T—J)— H* (M- M,)]

+ [ ds [E(T7)-(K = Ko) = HO(T") (N = \o)]
1)

where I' =T, + I') (0 <z </). Here, J, (M) and K (IV;)
are the impressed electric (magnetic) volume and surface
currents, respectively. (E“, H®) are the test fields, which
may be regarded as a set of weighting functions. The
undetermined trial fields (E, H) are supported by the
sources J, M, K, and N through the relations

J=v X H — joe,n’E

(2)
(3)

M=-v XE— jop,H
K=ax[H(I'")-H(T")] (4)
N=—ix[E(T)-E(T)]. (5)
Here p, and ¢, are the permeability and permittivity of
free space, and 7 denotes the outward normal of the
boundary I' whose inner and outer sides are represented
by T~ and T, respectively. It is noticed that the partial

variational operator §“ operates only on the test fields with
superscrlpt a [15] '
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Let a TE dominant mode be incident upon the discon-
tinuities from z = — oo; thus the excited fields contain only
E,, H, and H, components. Casling this into (2)~(5) and
(1), imposing the constraint M= M, =0 in  so that the
interior magnetic field can be expressed in terms of the
interior electric field through (3), and remembering that
J,, M,, K,, and N, are all null, cne obtains
Joo o [aE; JE, OE] f?f_y. g

wity Yo 0 yy

Jx W-F dz 0z

+frdsﬁ-[2H;‘(I‘+)—fH;(I‘*)][Ey(I‘*)—Ey(l““L)]

—frdsEy“(F - (6)

As usual, k,= "’M is the propagation constant of free
space.:

Equation (6) will be solved by the finite element method.
The interior fields (E;, E,) in & and (E;(I'"), E(I'"))
are represented by the finite element nodal values and the
corresponding local bases. The exterior fields E (I'"),
H(I'"), H(T*), H(T'"), and HXT™"), which must
satisfy the source-free Maxwell’s equations outside & and
the boundary conditions on Iy(z <0, z>/), will be re-
lated to the interior electric fields in the following section.

A-[*H.(T*) - 2H,(I")].

B. Exterior Field Representation

The transverse fields £ , and H, can be expanded by the
modes of the uniform dielectric waveguide [17], i.e.,

B, =X (a,+ b)u(x)+ [ de (a5 8,)u,(x) (7)
Ho= T a4 5) Vo, (x)

+/0 dp (—a,+b,) Yo u,(x). (8)
Here u,(x) and u,(x) are the modal functions for the
guided and radiation modes of the uniform waveguide,
whose propagation constants are 8, and B8, and whose
admittances are Y, (=8,/wp,y) and Yy, (=B,/wpy),
respectively. The modal coefficients (a,,a,) and (b,, b,),
which are functions of z, belong to the modes propagating
along the +z and — z directions, respectively.

The transverse fields are the combinations of the inci-
dent fields and the scattered fields due to the induced
polarization source jwP in the irregular reglon AQ. The
relation between P and E is

P(x,z)=(e(x,z)—€,(x))E = yAe = PP (x,z) (9)

where €(x, z) and ¢,(x) denote the perm1tt1vities with and
without the irregularities, respectively, and

n*(x,z)—ng, x<d

(10)
n*(x,z)—1, x>d..

Ae=e—¢,=¢,

By the modal orthogonality property and the Lorentz
reciprocity relationship, the coefficients in (7) and (8) may
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be written as [17] (see the Appendix)
aﬂ(z) = aF(O)e’fBu“’

Jw z Xo - -z
— dz' | dx' P(x’, 2 u, (x") e Pulz—3)
[ [ )

(11)

b,(z) =b,(I)eut==D

j(a) L, (%, , P , o
ZYO#j;dZ /(; dx'P(x', z )”u(x )e Bz,

(12)

Here u,(x) denotes the modal function of either the
guided or the radiation mode, and BM and Y,, are the
corresponding propagation constant and admittance, re-
spectively.

The first terms of (11) and (12) are the modal coeffi-
cients of the + z and — z propagated modes, respectively,
in the absence of the irregularities. The quantities a,(0)
and b,(/) are the coefficients of incident modes, which
come from z=— o0 and +o0, at z=0 and z =1, respec-
tively. For the present analysis,

1, w=1
and
b“(l) = () for all p. (14)

Now by substituting (11) and (12) into (7), one gets
E},(x, z)= ul(x)effBlz

+jwff dx'dz’ P(x',z')G(x,z; x'.z) (15)
AQ

where the Green’s function G takes the form

G(x,z; x',2') =G, + G, (16)
11 ,

Gi(x.z:x',z2') =— =3 —u,(x)u,(x)e B (17)
27,
o e M7

G,(x. z; x’,z’)=f0 dp Tpup(x)up(x’). (18)

The integral in (18) can further be separated into two
parts: one contains the Green’s function of free space, and
the other is the additional term due to the presence of the
slab [11], i.e.,

Wi
G,= T [HéZ)(koRJr ) + H(gZ)(koR— )]

e IVks =P lz— =
[r2_ 2
ko —p

where R, = [(x + x)?*+(z — z)?]"/? and

+wuof0 dp t(p; x.x’) (19)

t(p; x, x") =u,(x)u,(x')— %cos(px)cos(px’). (20)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 9, SEPTEMBER 1988

For numerical computation, the variable p in (19) is
transformed into a complex variable ¢:

p(p) =kycosg.
Thus (19) becomes

(21)

wp
G, = 20[Ho(z)(koR+)+H(§2)(koR—)]

/2 - z—z'|sin ’

+w,u0./0 doe k=5 (5 (@); x, x')

+ w,uofo doe /Mlz==1sm%r (o (@) x,x7). (22)
~ oo
The integrand in the third term of (22) decays and oscil-
lates rapidly so that the integration may be completed
period by period until the integral of the period around
some @, is under a given value £. For £ =104, the typical
value of ¢, is about 5 ~ 6 (radians).

We have represented the exterior electric field by the
induced polarization source P through (15). To obtain the
exterior magnetic fields, one starts from Maxwell’s equa-
tions and gets

whtoH, = — 31“1(36)9—]31:

)
+ wf dx'dz’ P(x',2)—G(x,z; x',2)  (23)
AQ aZ
(duy(x)

wpoH, = j———e

d
- w/ dx'dz’P(x',z')—G(x,z; x',z). (24)
AQ dx

It remains to compute the far-field pattern associated
with (7). By the saddle point method. we obtain the
expression for the far field [9]:

kz_pz
,E_f(r,ﬂ)‘: Ok p
0
0<f<
! <Usy
1a”()l, kor=>1, 2 (25)
|5,(0) | S<b<n

where p=k,sinf and (r,0) are the polar coordinates of
(x,z):
x =rsinf z=rcosé.

(26)

The quantities a,(/) and b,(0) are the coefficients of the
radiation modes scattered to the forward and backward
directions, respectively, which can be calculated from (11)
and (12). It is noticed that (25) is the far field outside the
slab waveguide, namely the radiation field, which does not
include the scattered guided waves.

C. Numerical Procedure

The induced polarization source in (15), (23), and (24) is
a function of the electric field in the irregular region AQ,
which may be represented by the undetermined nodal field
values and the corresponding local bases in the finite
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Fig. 2. Typical mesh division for linearly tapered discontinuity in slab
waveguide.

element approach. With this in mind and by substitutiﬁg
(15), (23), and (24) into the exterior fields of (6), we finally
obtain a functional of the form
J JE* JE 8E ¢ JE

[—y . —> —kin’EE,

Jé=—— 7
dx dx Bz dz

@ /o

+ [ asfi( B2 A)[E,(T )~ 1(E,(89))]
+frdsE;(F‘)fh(E;(A9))

- f ds [ e E£(AQ)) + Hiy ES(TT)]. (27)
In (27), f, and fh (or f) are the exterior electric and
magnetic fields, respectively, which are all functions of E,
(or Ef) in AQ. E;,. and H,, are the incident tangent1a1
(to the boundary I';) fields. It is noticed that the integrals
on I, (0 <z <) of (6) vanish, since the Green’s function
s symmetric with respect to the y—z plane and causes the
tangential magnetic field on that boundary to be zero.

In the finite element solution, the region & is divided
into a finite number of second-order triangular elements,
each with six nodes {18]. A typical subdivision is shown in
Fig. 2, where the intervals along the x and z axes are M,
and M,, respectively. In order to avoid the singularities of
Green’s function, the artificial boundary I, should enclose
the boundary of the irregularities; as shown in Fig. 2.

Using the Ritz procédure [18], we finally obtain a matrix
equation of the form

AY=s (28)

in which A4 represents a kriown matrix, while ¢ and s are

vectois concerning the unkhown nodal values and the

source terms due to the incident -fields, respectively. The
fields in 2 can be solved by inverting (28). The transmis-
sion coefficient T (=ay(1)) and reflection coefficient R
(= b,(0)) as well as the radiation patterns are ther ob-
tained from (11), (12), and (25).

’ III. NuUMERICAL RESULTS

Convergence of reflection and transmission coefficients
for a linearly tapered air gap (Fig. 2 with p=b=4d) is
tabulated in Table 1. The parameters of the slab are
kod =0.5 and n,=2.24; thus only one guided mode can
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‘ TABLE 1
REFLECTION AND TRANSMISSION COEFFICIENTS OF LINEARLY
TAPERED AIR GAP (FIG. 2 WITH p = b=d) WITH kod,= 0.5 AND

ng=2.24
Mg x M R T
2 x 4 0.4163 ,/102,98° | 0.8792. 32,46°
3 x 6 0.4154 102.85° | 0.8797 ,/32.42°
4 % 8 0.4155 ,7102.87° | 0.8795 ,32.40°
5 x 9 0.4155 7102.87° | 0.8795 ,732.40°

TABLE 11
RADIATED POWERS OF ABRUPTLY TERMINATED AIR GAPS
(F1G. 2 WITH p = 0) WITH kyd =0.5
AND n, = 224

b/ d M_x M | 1-|R|Z-|T]|® Peap < Pinc
1 4x5 0.0279 0.0279
2 A4 X7 0.0955 0.0955
3 4x9 0.1917 0.1918
4 4 x 10 | .0.3075 0.3075
5 ’ 4 x 10 0.4230 -0.4229
6 4 x 10 0.5064 0.5064

propagate in the waveguide. The field is incident from the
left-hand side, which has a linearly tapered end. In the
discontinuity region, there are M, —1 intervals along the x
axis and M, —2 intervals along the z axis (referring to Fig.
2). Even for a rough division such as M, X M, = 2X4, the
relative errors are less than 0.2 percent.

Table II shows the radiated power of abruptly terminated
air gaps (Fig. 2 with p = 0) with various lengths. There are
two methods for calculating the total radiated power: one
is. by subtracting the reflected and transmitted powers
from the incident one, as shown in the third column of
Table II; the other is by calculating the power radiated at
each aspect angle ¢ and then integrating it through all 4
(0 < @ < 7). The results of the latter method are shown in
the last column of Table II. For most cases, the two
methods give the same results up to four significant fig-
ures. The required CPU time depends on the mesh division
in the irregular region. For example, the CPU times for
b/d=1 (M. XM.=4X5), b/d=2 (M,X M, =4X7),

“and b/d =3 (M, X M,=4X9) are 4.8, 10, and 18 minutes

on the VAX 11 /780, respectwely

Fig. 3 compares our results with those of Rozzi and
In’tVeld [10] and Suzuki and Koshiba [14]. In our calcula-
tions, M, =3, while M, is decided by the length of the
gap. (Note that the dimension of the slab is smaller than



1356
1.
S
L T TR E
- 27 IRI 1
z
L 1 1 1 l 1 1 1 1
0 5 10
b/d
Fig. 3. Comparison of our results ( ) with those of Rozzi er al

[10] (++++) and Suzuki et al. [14] (————). p=0, kod =02, n, =224

£ —2d+
N Ng \ ng d
TBE T

vd

Fig. 4. Reflection and transmission coefficients as well as normalized

radiated powers for linearly tapered air gaps. vd = \/né =1 -kod, n,=
2.24.

that of Tables I and I1.) The curves show good agreement
when b is small, and slight disagreement when b is in-
creased. :

The variations of reflection and transmission coeffi-
cients, as well as the normalized radiated power as a
function of the normalized frequency, vd = ,/nf, —1-kyd,
are illustrated in Fig. 4. We show only the curves up to
vd = 7, beyond which the second guided mode of the
uniform slab waveguide is above cutoff. We observe that
the square sum of the reflection and transmission coeffi-
cients plus the normalized radiated power should equal
unity for power conservation to hold at each normalized
frequency vd. At lower frequencies (vd < 0.32), the three
curves for p=d have the same tendency as the corre-
sponding ones for p = 0, probably due to the smaller taper
length in comparison with the wavelength. As the frequency
increases, the transmission coefficients for both discontinu-
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0 2 4 6
p/d
Fig. 5. Reflection and transmission coefficients as well as normalized

radiated powers for incidence from LHS (with subscript L) and RHS
(with subscript R). kod =0.5, n,=2.24

ities decrease (except near the cutoff of the second guided
mode for the case of p =0).

The behavior of the reflection coefficient in Fig. 4 is not
as regular as that of the transmission coefficient. The
reflection curve for p =d is first less (for vd <1.84) and
then greater (vd >1.84) than that for p =0. The reason
may be as follows: For p =0 there are two abrupt junc-
tions, which will cause strong reflection. For the normal-
ized frequency in the middle range, the reflected waves
from both junctiors come approximately in phase and
constructively add to yield the total reflected wave. But for
the higher frequency such that the reflected waves from the
two junctions add destructively, the total reflected wave
may be reduced. On the other hand, in the case of p=4d,
the two ends of the air gap are different. The right-hand-
side one is abrupt, which will cause strong reflection; while
the left-hand-side one is tapered, which will cause less
reflection, relatively. Therefore the total reflected wave is
contributed mainly by the abrupt end only. This explains
why the reflection curve for p = d rises monotonically with
increasing normalized frequency. It is noticed that the
radiation loss for p =0 is always greater than that for
p=d.

Fig. 5 discusses the scattering behavior for waves inci-
dent from the left-hand side (LHS) and the right-hand side
(RHS). For each p, the reflection coefficient (R;) for
incidence from the LHS is always less than that (R z) from
the RHS. A reasonable explanation is now suggested: In
an air gap with (long) taper, the reflection is produced
dominantly by the abrupt junction. For the field incident
from the RHS, there 1s no power lost before it first meets
the abrupt junction where a relatively large reflection take
places. While the wave is incident from the LHS, it must
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Fig. 6. Radiation losses due to fusion splices. (a) Triangular joint. (b)
Rectangular joint.

travel twice through the taper and free space, where some
power is lost to the surroundings before it is reflected back
to the LHS. Thus there is more reflected power for inci-
dence from the RHS. Nevertheless the transmission coeffi-
cients for incidence from both sides should be the same by
reciprocity.

The radiation loss due to fusion splices is illustrated in
Fig. 6. Here we assume no refractive index change during
splicing, but consider only the shape change. The wave-
guide is sunken for & /d <0, and is raised for & /d > 0. We
observed that the radiation loss of the rectangular splice
(Fig. 6(b)) is greater than that of the triangular one (Fig.
6(a)). (Note the different scales in both figures.) One point
worth noticing is that for & /d > 0, the losses for kyd = 0.5
are quite small until % is considerably large.

The radiation patterns of various discontinuities are
plotted in Fig. 7(2) and (b) with kyd as parameters. For
kod < 0.9, the radiation pattern has one single lobe with
the maximum between § =80° and 90°, independent of
the shape of the discontinuity. When k,d becomes larger,
the shape of the pattern changes. In the case of the

1357

.15

O

o
a

PRAD (e)/PI NC

N

.
—_
T

PRAD (e)/ PINC

(b)

Fig. 7. Radiation patterns of (a) linearly tapered air gaps and (b)
abruptly terminated air gaps. n, = 2.24.

abruptly terminated air gap (Fig. 7(b)), most of the lost
power radiates in the direction of incidence. For the lin-
early tapered air gap (Fig. 7(a)), the power radiated to the
vertical angle (6 =90°) is reduced, but is concentrated
toward the two horizontal angles (# = 0° and 6 =180°).

IV. CONCLUSIONS

A new approach, which combines the partial variational
principle (PVP), the finite element method coupled with
frontal solution technique, and the Green’s function tech-
nique, has been proposed to deal with discontinuity prob-
lems in a planar dielectric waveguide. Several numerical
results, such as the reflection and transmission coefficients
as well as the radiation losses and patterns, have been
investigated and explained. In general the tapered struc-
ture increases the transmission coefficients but reduces the
radiation losses. Also it changes the behavior of the reflec-
tion mechanism and the radiation patterns, which may be
useful in designing related circuit components.

Due to its accuracy and generality, the proposed method
can treat arbitrary discontinuities in a slab guide. This
method can also solve the discontinuity problems with a
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TM mode incidence. However if discontinuities are formed
between two different slab guides, such as the step trans-

former, the present method will be inadequate because of.

the difficulty in constructing the Green’s function. To
solve this type of discontinuity, another method is under
study and will appear in the near future.

" APPENDIX
DERIVATION OF (11) AND (12)

For the system (E,, H;; P) with P defined by (9) and a
source-free system (E,, H,), the Lorentz reciprocity rela-
tion takes the form

[ve]
= —jwfo dx' P-Ej.

(A1)

By representing the transverse components of E;, and H,
by (7) and (8), choosing either guided or radiation mode of
the guide for (E,, H,), and using the modal orthogonality
property and the relations

a#(z) = A”(z)e'fﬁwz
b(z)= Bu(z)ejﬁﬂz

one has
dA
P iB.z
P 2Y0,Lf dx'P(x',z")u,(x) e (A2)
dB,
r_ N ,—JB.z
e 2Yo / dx'P(x',z")u ”(x)e Hut’ - (A3)

Then after integrating (A2) over 0 < z’ < z and (A3) over
z < z'</, and then multiplying the results by e #* and
ej'gnz, respectively, one may obtain the desired expressions
in (11) and (12).
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