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Analysis of Irregularities in a Planar
Dielectric Waveguide

SHYH-JONG CHUNG AND CHUN HSIUNG CHEN

,4h$tracf —A numerical method based on the partial variational principle

(PVP) is proposed to solve discontinuity problems due to arbitrary irregu-

larities in a planar dielectric waveguide. In this stndy, a variational equa-

tion is established and solved by the finite element method along with the

Green’s function technique. The integral variable of the Green’s function

is changed so that numerical calculations can easily be performed. Owing

to the accuracy of the present method, the radiation fields can be obtained

with no difficulty. Several numerical results, including the reflection and

transmission coefficients as well as the radiatiou losses and patterns, are

calculated and compared.

I. INTRODUCTION

D ISCONTINUITY problems in open dielectric wave-

guides are essential to the design of various optical

and millimeter-wave components, such as filters, grating

couplers, and distributed feedback lasers. They also play

an important role in the splicing of two optical fibers.

Because of the unboundedness of the structure and the

presence of the continuous spectrum, the analysis of the

discontinuities in an open waveguide is more difficult than

that in a closed one. Roughly speaking, the discontinuity

problems in open waveguides may be divided into three

categories: problems with small discontinuities, problems

with step discontinuities, and problems with arbitrary dis-

continuities.

For the first category, Marcuse [1] approximated a

tapered dielectric waveguide by many infinitesimal step

junctions, and then assumed that the modes of the ad-

jacent waveguides are approximately orthogonal. Clar-

ricoats and Sharpe [2] neglected the continuous modes and

matched only the discrete modes at the junction of a small

step. Miyanaga and Asakura [3] solved a linearly tapered

grating coupler on the basis of the first-order perturbation

theory by dividing the grating region into short subsec-

tions.

For problems with large steps, some authors have re-

placed the unbounded configuration by bounded [4] or

periodic [5] ones. Some have discretized the continuous

spectrum of the radiation modes, using a complete set of

“good functions” for expansion [6]–[8]. They then applied

the mode-matching technique or the least squares boundary
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residual method to solve the step discontinuities. Rozzi

and In’tVeld [9]–[11] solved an integral equation by the

Ritz-Galerkin method, while Gelin et al. [12] and Capsalis

et al. [13] solved it by the Neumann series iteration proce-

dure.

The previous methods can solve discontinuity problems

either with slight perturbations or with regular shapes,

such as step junction problems. It appears that none of

these methods can be used to tackle problems with arbi-

trary discontinuities. Suzuki and Koshiba [14] treated these

problems by combining the finite element method and the

analytical method. In their work, the fields far from the

waveguide discontinuities were assumed to be zero: thus

one could place a semi-infinite electric conductor at the

field-free region.

In our approach, the scattering problem of a uniform

slab waveguide with arbitrary discontinuities is analyzed

on the basis of the partial variational principle (PVP) [15].

From the PVP, a variational equation including the inter-

ior and exterior fields is obtained and solved by the finite

element method coupled with the frontal solution tech-

nique [16]. The interior fields are represented by the finite

element nodal values and the corresponding local bases,

while the exterior fields are expanded as a function of the

nodal values at the discontinuity region through the Green’s

function of the uniform slab waveguide. Since no assump-

tion about the fields far from the discontinuities is im-

posed, the finite element boundary can be put as close to

the irregular region as possible.

The validity of the proposed method is examined by

observing the convergence and the power conservation of

the numerical data, and also by comparing the numerical

results with those obtained by other methods. The reflec-

tion and transmission coefficients as well as the radiation

patterns caused by several discontinuities are presented
and compared.

II. FORMULATION OF THE PROBLEM

A. Variational Equation

In this study, we consider only the symmetric discon-

tinuity problems associated with a slab waveguide which is

excited by an even TE mode as shown in Fig. l(a). The

structure is symmetric with respect to the y – z plane and

is uniform in the ,V direction. Thus an infinite magnetic

wall rO may be placed on the y – z plane so that only the
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Fig. 1. (a) Original scattering problem with irregularities in slab wave-
guide. (b) Hatf strocture for analysis.

region x >0 needs to be considered. Then we have an

irregular region Ail of arbitrary shape and inhomogeneous

refractive index n (x, z) connected to an otherwise uniform

slab guide of refractive index n ~ and half-width d, as

shown in Fig. l(b). The magnetic wall 1’0 and the artificial

boundary I’a enclose the finite element region Q (O< z <1,

o<x<x~).
From the partial variational principle (PVP) [15], one

gets the following variational equation:

/
1“= ~du [E”. (J- Jo)- Ha. (M-MO)]

J+ ,rd~ [~a(r-)-(~ –~o)–w(r+) .(fv–iyo)]

(1)

where I’= ra + rO (O < z < 1). Here, JO (MO) and KO (NO)

are the impressed electric (magnetic) volume and surface

currents, respectively. (1? a, Ha ) are the test fields, which

may be regarded as a set of weighting functions. The

undetermined trial fields (E, H) are supported by the

sources J, M, K, and N through the relations

J=v xH– jacon2E (2)

M=–v XE–jupoH (3)

K= fix[H(I’+)-H(r-)] (4)

N=–fix[E(r+ )- E(~-)]. [5)

Here PO and 60 are the permeability and permittivity of

free space, and fi denotes the outward normal of the

boundary I’ whose inner and outer sides are represented

by r- and 17’, respectively. It is noticed that the partial

variational operator 8a operates only on the test fields with

superscript a [15].
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Let a TE dominant mode be irlcident upon the discon-

tinuities from z = – cc; thus the eicited fields contain only

EY, HX, and Hz components. Casting this into (2)-(5) and

(l), imposing the constraint M= M, = O in Q so that the

interior magnetic field can be expressed in terms of the

interior electric field through (3), and remembering that

Jo, Mo, Ko, and NO are all null, cne obtains

J[dE; dEY i3E; dEY
1%~ du — —+ —-—

dx dX
kin ‘E ‘E

@po Q dz az YY 1
J+ ~d~fi.[m;(r+)– f~:(r+)] [~y(r-)–q(r’)]

-fd~fi;(r-)fi[f~= (r+)-~~x(r+)l. (6)r
As usual, k.= ti& is the propagation constant of free

space.

Equation (6) will be solved by the finite element method.

The interior fields (E;, Ey) in L? and (E~(r -), Ey(r - ))

are represented by the finite elemmt nodal values and the

corresponding local bases. The exterior fields E)(I’+ ),

HX(r+ ), Hz(I’+ ), H;(I’+ ), ancl H:(I’+ ), which must

satisfy the source-free Maxwell’s (equations outside Q and

the boundary conditions on ro(z <0, z > 1), will be re-

lated to the interior electric fields in the following section.

B. Exterior Field Representation

The transverse fields Ey and HX can be expanded by the

modes of the uniform dielectric waveguide [17], i.e.,

Ey= ~(uV+bV)uV(x) +~”’dp(aP+bP)uP(x) (7)
v

+ /(~dp –ao+bo)Yol,ztP(x).
o

(8)

Here u,(x) and ~P(x) are the modal functions for the

guided and radiation modes of the uniform waveguide,

whose propagation constants arc fiV and ~P and whose

admittances are YOV ( =&/tip. ) and YOP ( = Bp/L’PO),

respectively. The modal coefficients (a,, aP) and (b., b.),

which are functions of z, belong to the modes propagating

along the + z and – z directions, respectively.

The transverse fields are the combinations of the inci-

dent fields and the scattered fields due to the induced

polarization source juP in the irregular region AL?. The

relation between P and E is

P(x, z) = (C(X, Z)– Cb(X))E ==jA6Ev=jP(X, Z) (9)

where E(X, Z) and c~(x) denote the permittivities with and

without the irregularities, respectively, and

{

nz(x, z)–n~,
A(=c–c~=co. :;; (lo)

n2(x, z)–1,

By the modal orthogonality property and the Lorentz

reciprocity y relationship, the coefficients in (7) and (8) may
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be written as [17] (see the Appendix)

- #(~Z’.JxO~X’~(X’, ~’)~w(x’)e-’’(”)”)
Op o

(11)

(12)

Here UP(x) denotes the modal function of either the

guided or the radiation mode, and /3M and Yop are the

corresponding propagation constant and admittance, re-

spectively.

The first terms of (11) and (12) are the modal coeffi-

cients of the + z and – z propagated modes, respectively,

in the absence of the irregularities. The quantities aP(0)

and bP(1) are the coefficients of incident modes, which

come from z = – m and + m, at z = O and z = 1, respec-

tively. For the present analysis,

(13)

and

b~(l)=O for all v. (14)

Now by substituting (11) and (12) into (7), one gets

Ey(x, z)== ul(x)e-JB1z

+ ju J/ dX’dZ’~(X’, z’)G(x, Z; X’, Z’) (15)
AO

where the Green’s function G takes the form

G(x, z; X’, Z’) =Gl+Gz (16)

Gl(x, z: x’, z’) = – ~~~uu(x) uu(x’)e-’p’l’-”l (17)
0.

f

e–Jb’,lz-z’l

G2(x, z; X’, Z’) = ~dp y Up(x) uo(x’). (18)
o Op

The integral in (18) can further be separated into two

parts: one contains the Green’s function of free space, and

the other is the additional term due to the presence of the

slab [11], i.e.,

G2=~[H@(koR+)+H [2)(koR_)]

,.,~,z -.,
+ (h)po

/ ‘dpJF7
t(p; x,x’) (19)

o

_ [(x k X’)2+(Z – z’)2]1/2andwhere R ● =

f(p; X,x’) =Zfp(x)up(x’)– :Cos(px)cos(px’). (20)

For numerical computation, the variable p in (19) is

transformed into a complex variable q:

p(q)= kocoscp. (21)

Thus (19) becomes

G2=:[H~2)(koR+) +H~2)(koR_)]

J
?7/2

+ 6J/.lo @ e-,kol= -:’1 Slllqt(p(q); x,x’)
o

J
o dve-jkolz-z ‘lsin~~(p(~); x,x’). (22)+ &lpo

– JW

The integrand in the third term of (22) decays and oscil-

lates rapidly so that the integration may be completed

period by period until the integral of the period around

some rpo is under a given value $. For $ = 10”, the typical

value of q. is about 5-6 (radians).

We have represented the exterior electric field by the

induced polarization source P through (15). To obtain the

exterior magnetic fields, one starts from Maxwell’s equa-

tions and gets

+(IJ U dx’dz’P(x’, z’):G(x, z; X’, z’) (23)
Afl

dul(x)
apoHz= j— e ‘J&~

dx

—w
/./

d.x’dz’P(x’, z’)+G(x, z; X’, Z’). (24)
Af2

It remains to compute the far-field pattern associated

with (7). By the saddle point method. we obtain the

expression for the far field [9]:

[

. Iap(l)l 0<6’<;

lbp(0) /
, kor>>l,

77 (25)

<9 <71
T

where p = k. sin 13 and (r, 0 ) are the polar coordinates Of

(x, z):

x=rsin$ z=rcos 6’. (26)

The quantities a,(1) and bp(0) are the coefficients of the

radiation modes scattered to the forward and backward

directions, respectively, which can be calculated from (11)

and (12). It is noticed that (25) is the far field outside the

slab waveguide, namely the radiation field, which does not

include the scattered guided waves.

C. Numerical Procedure

The induced polarization source in (15), (23), and (24) is

a function of the electric field in the irregular region AQ,

which may be represented by the undetermined nodal field

values and the corresponding local bases in the finite
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Fig. 2. Typical mesh division for linearly tapered discontinuity in slab
waveguide.

element approach. With this in mind and by substituting

(15), (23), and (24) into the exterior fields of (6), we finally

obtain a functional of the form

J[

dEJ dEY $EJ dEY
Ia=~ do — —+—— – k&2EaE

U1-lo Q ax ax az az YY
1

-~@(EY(AQ))]

In (27), ~, and f~ (or ~:) are the exterior electric and
magnetic fields, respectively, which are all functions of EY

(or 2J) in AL?. EinC and Hint are the incident tangential

(to the boundary ri) fields. It is noticed that the integrals

on I’. (Os zs 1) of (6) vanish, since the Green’s function

is symmetric with respect to the y – z plane and causes the

tangential magnetic field on that boundary to be zero.

In the finite element solution, the region Q is divided

into a finite number of second-order triangular elements,

each with six nodes [18]. A typical subdivision is shown in

Fig. 2, where the intervals along the x and z axes are MX

and MZ, respectively. In order to avoid the singularities of

Green’s function, the artificial boundary r. should enclose

the boundary of the irregularities, as shown in Fig. 2.

Using the Wtz procedure [18], we finally obtain a matrix

equation of the form

(28)

in which A—represents a known matrix, while + and s are

vectors concerning the unk~own nodal values and the

source terms due to the incident fields, respectively. The

fields in 0 can be solved by inverting (28). The transmis-

sion coefficient T ( = al(1)) and reflection coefficient R

( = bl(0)) as well as the radiation patterns are then ob-

tained from (11), (12), and (25).

III. NUMERICAL RESULTS

Convergence of reflection and transmission coefficients

for a linearly tapered air gap (Fig. 2 with p = b = d) is

tabulated in Table I. The parameters of the slab are

kod = 0.5 and n~ = 2.24; thus only one guided mode can
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TABLE I
REFLECTION AND TRANSMISSION Co EFFICIENT OF LINEARLY

TAPERED AIR GAP (FIG. 2 WITH p = b = d) WITH kou! = 0.5 AND
ng = 2.24

I

MX X ~z

2x4 0.4SLH

3x6 0.4154 /102.85° 0.8797 /32.42°

I 5 x 9 I 0.4155 /102.87° I 0.8795 /32.40° I
1 , ,

TABLE II

RADIATED POWERS OF ABRUPTLY ‘GERMINATED AIR GAPS
(FIG. 2 WITH p = O) WITH kod = 0.5

AND nz = 2.24

3 4x9 0.1917

a

0.1918

4 4X1O 0.3075 0.3075

5 4X1O 0.4230 0.4229

6 4X1O 0.5064 0.5064

propagate in the waveguide. The field is incident from the

left-hand side, which has a linearly tapered end. In the

discontinuity region, there are MX – 1 intervals along the x

axis and MZ – 2 intervals along the z axis (referring to Fig.

2). Even for a rough division such as MX X MZ = 2 X 4, the

relative errors are less than 0.2 percent.

Table II shows the radiated power of abruptly terminated

air gaps (Fig. 2 with p = O) witli various lengths. There are

two methods for calculating the total radiated power: one

is by subtracting the reflected and transmitted powers

from the incident one, as shown in the third column of

Table II; the other is by calculating the power radiated at

each aspect angle O and then integrating it through all O

(O< 0< n). The results of the latter method are shown in

the last column of Table II. For most cases, the two

methods give the same results up to four significant fig-

ures. The required CPU time depends on the mesh division

in the irregular region. For example, the CPU times for

b/d=l (MXXM==4X5), b/d=2 (A4’XXMZ=4XT),
and b/d = 3 (MX X M, = 4 X 9) are 4.8, 10, and 18 minutes

on the VAX 11/780, respectively.

Fig. 3 compares our results with those of Rozzi and

In’tVeld [10] and Suzuki and Koshiba [14]. In our calcula-

tions, MX = 3, while M= is decidled by the length of the

gap. (Note that the dimension of the slab is smaller than
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Fig. 3. Comparison of our results (— ) with those of Rozzi et d

[10] ( . . . .) and Suzuki et al. [14] (----). p = O, kod = 0.2, ng=224
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Fig, 4. Reflection and ‘transmission coefficients as well as normalized

radiated powers for linearly tapered air gaps. ud = ~. kod, ng =

2.24.

that of Tables I and II.) The curves show good agreement

when b is small, and slight disagreement when b is in-

creased.

The variations of reflection and transmission coeffi-

cients, as well as the normalized radiated power as a

F“’.’,function of the normalized frequency, Ud = n

are illustrated in Fig. 4. We show only the curves up to

vd = n-, beyond which the second guided mode of the

uniform slab waveguide is above cutoff. We observe that

the square sum of the reflection and transmission coeffi-

cients plus the normalized radiated power should equal

unity for power conservation to hold at each normalized

frequency vd. At lower frequencies ( vd < 0.32), the three

curves for p = d have the same tendency as the corre-

sponding ones for p = O, probably due to the smaller taper

length in comparison with the wavelength. As the frequency

increases, the transmission coefficients for both discontinu-

1- P4

‘v—————l

L=’”l
.5 -

IRLI lR~l

,
0 6

p/d
Fig. 5, ReflectIon and transmission coefficients as well as normalized

radiated powers for incidence from LHS (with subscript L) and RHS

(with subscrrpt R). kod = 0.5, n,= 2.24

ities decrease (except near the cutoff of the second guided

mode for the case of p = 0).

The behavior of the reflection coefficient in Fig. 4 is not

as regular as that of the transmission coefficient. The

reflection curve for p = d is first less (for vd <1.84) and

then greater ( vd > 1.84) than that for p = O. The reason

may be as follows: For p = O there are two abrupt junc-

tions, which will cause strong reflection. For the normal-

ized frequency in the middle range, the reflected waves

from both junctioris come approximately in phase and

constructively add to yield the total reflected wave. But for

the higher frequency such that the reflected waves from the

two junctions add destructively, the total reflected wave

may be reduced. On the other hand, in the case of p = d,

the two ends of the air gap are differeht. The right-hand-

side one is abrupt, which will cause strong reflection; while

the left-hand-side one is tapered, which will cause less

reflection, relatively. Therefore the total reflected wave is

contributed mainly by the abrupt end only. This explains

why the reflection curve for p = d rises monotonically with

increasing normalized frequency. It is noticed that the

radiation loss for p = O is always greater than that for

p=’.

Fig. 5 discusses the scattering behavior for waves inci-

dent from the left-hand side (LHS) and the right-hand side

(RHS). For each p, the reflection coefficient (RJ for

incidence from the LHS is always less than that ( R ~ ) from

the RHS. A reasonable explanation is now suggested: In

an air gap with (long) taper, the reflection is produced

dominantly by the abrupt junction. For the field incident

from the RHS, there is no power lost before it first meets

the abrupt junction where a relatively large reflection take

places. While the wave is incident from the LHS, it must
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Fig. 6. Radiation losses due to fusion splices. (a) Triangular joint. (b)

Rectangular joint.

travel twice through the taper and free space, where some

power is lost to the surroundings before it is reflected back

to the LHS. Thus there is more reflected power for inci-

dence from the RHS. Nevertheless the transmission coeffi-

cients for incidence from both sides should be the same by

reciprocity.

The radiation loss due to fusion splices is illustrated in

Fig. 6. Here we assume no refractive index change during

splicing, but consider only the shape change. The wave-

guide is sunken for h /d <0, and is raised for h /d >0. We

observed that the radiation loss of the rectangular splice

(Fig. 6(b)) is greater than that of the triangular one (Fig.

6(a)). (Note the different scales in both figures.) One point

worth noticing is that for h/d >0, the losses for kod = 0.5

are quite small until h is considerably large.
The radiation patterns of various discontinuities are

plotted in Fig. 7(a) and (b) with kod as parameters. For

kod <0.9, the radiation pattern has one single lobe with

the maximum between O = 80° and 90°, independent of

the shape of the discontinuity. When kod becomes larger,

the shape of the pattern changes. In the case of the

LA
kOd=l .57

2.10
~-
S .-<:? :<13.90
<.05

.-., /’\.
\._./:*\ “\

n“ /// \ “\
/;’ ‘\”\

o 45 90 135 ‘180”
e

(a)

.3

El
kOd=l.5’7

2 “2 f -“’”~.%1.30
\ ,-% \,
~

:.1
‘\

/ A.90 \: \
n“ I /1 \\\

i/’
‘/ \\

o 45” 90° 135” ‘“l 80°
e

(b)

Fig. 7. Radiation patterns of (a) linearly tapered air gaps and (b)

abruptly terminated air gaps. ng = 2.24.

abruptly terminated air gap (Fig, 7(b)), most of the lost

power radiates in the direction of incidence. For the lin-

early tapered air gap (Fig. 7(a)), the power radiated to the

vertical angle (8 = 90°) is reduced, but is concentrated

toward the two horizontal angles (0 = 0° and O =1800).

IV. CONCLU!UONS

A new approach, which combines the partial variational

principle (PVP), the finite element method coupled with

frontal solution technique, and the Green’s function tech-

nique, has been proposed to deal with discontinuity prob-

lems in a planar dielectric waveguide. Several numerical

results, such as the reflection and transmission coefficients

as well as the radiation losses and patterns, have been

investigated and explained. In general the tapered struc-

ture increases the transmission co~fficients but reduces the
radiation losses. Also it changes the behavior of the reflec-

tion mechanism and the radiation patterns, which may be

useful in designing related circuit components.

Due to its accuracy and generality, the proposed method

can treat arbitrary discontinuitics in a slab guide. This

method can also solve the discontinuity problems with a
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TM mode incidence. However if discontinuities are formed

between two different slab guides, such as the step trans-

former, the present method will be inadequate because of

the difficulty in constructing the Green’s function. To

solve this type of discontinuity, another method is under

study and will appear in the near future.

APPENDIX

DERIVATION OF (11) AND (12)

For the system (El, ill; P) with P defined by (9) and a

source-free system (Ez, Hz), the Lorentz reciprocity rela-

tion takes the form

(Al)

By representing the transverse components of El and HI
by (7) and (8), choosing either guided or radiation mode of

the guide for (Ez, Hz), and using the modal orthogonality

property and the relations

aP(z) = AW(z)e-j6~z

bP(z)=BP(z)e~p~z

one has

Then after integrating (A2) over O < z’< z and (A3) over

zs z‘ K 1, and then multiplying the results by e‘JB~z and

ej~~z, respectively, one may obtain the desired expressions

in (11) and (12).
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